12 research outputs found

    AQuoSA - adaptive quality of service architecture

    Get PDF
    This paper presents an architecture for quality of service (QoS) control of time-sensitive applications in multi-programmed embedded systems. In such systems, tasks must receive appropriate timeliness guarantees from the operating system independently from one another; otherwise, the QoS experienced by the users may decrease. Moreover, fluctuations in time of the workloads make a static partitioning of the central processing unit (CPU) that is neither appropriate nor convenient, whereas an adaptive allocation based on an on-line monitoring of the application behaviour leads to an optimum design. By combining a resource reservation scheduler and a feedback-based mechanism, we allow applications to meet their QoS requirements with the minimum possible impact on CPU occupation. We implemented the framework in AQuoSA (Adaptive Quality of Service Architecture (AQuoSA). http://aquosa.sourceforge.net), a software architecture that runs on top of the Linux kernel. We provide extensive experimental validation of our results and offer an evaluation of the introduced overhead, which is perfectly sustainable in the class of addressed applications

    Towards the Development, Maintenance and Standardized Phenotypic Characterization of Single-Seed-Descent Genetic Resources for Chickpea

    Get PDF
    Here we present the approach used to develop the INCREASE “Intelligent Chickpea” Collections, from analysis of the information on the life history and population structure of chickpea germplasm, the availability of genomic and genetic resources, the identification of key phenotypic traits and methodologies to characterize chickpea. We present two phenotypic protocols within H2O20 Project INCREASE to characterize, develop, and maintain chickpea single-seed-descent (SSD) line collections. Such protocols and related genetic resource data from the project will be available for the legume community to apply the standardized approaches to develop Chickpea Intelligent Collections further or for multiplication/seed-increase purposes. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC

    Stochastic feedback-based control of QoS in soft real-time systems

    Get PDF
    This paper investigates application of feedback based control mechanisms to the problem of scheduling soft real-time tasks, so to meet certain quality of service (QoS) requirements. First, a stochastic model is introduced for a task evolving under the effect of a feedback based controller, where the uncertainties due to the apriori unknown execution times of the jobs are catched in terms of an input stochastic process. The problem of control is formalised in the stochastic domain, by expressing QoS requirements in terms of stochastic properties to be satisfied by the system state evolution process. Control laws satisfying some of the stated requirements are introduced, and fundamental facts are proved on the closed loop system dynamics under the effect of such controllers, such as stochastic stability. Finally, experimental results are presented gathered by an implementation of the controllers in the Linux kernel, showing feasibility and effectiveness of the proposed approach in controlling the QoS experienced during a video decoding application

    QoS Management through adaptive reservations

    Get PDF
    Reservation based (RB) scheduling is a class of scheduling algorithms that is well-suited for a large class of soft real-time applications. They are based on a "bandwidth" abstraction, meaning that a task is given the illusion of executing on a dedicated slower processor. In this context, a crucial design issue is deciding the bandwidth that each task should receive. The point we advocate is that, in presence of large fluctuations on the computation requirements of the tasks, it can be a beneficial choice to dynamically adapt the bandwidth based on QoS measurements and on the subsequent application of feedback control (adaptive reservations). In thi

    Adaptive reservations in a Linux environment

    No full text
    In this paper, we address the problem of adaptively reserving the CPU to concurrent soft real-time tasks, in order to meet target Quality of Service requirements. First, we present two new techniques inspired to the idea of stochastic control. Then, we present a flexible and modular software architecture suitable for adaptive scheduling, realised as a minimally invasive set of modifications to the Linux Kernel. Finally, we show experimental results that validate our approach and prove its effectiveness in the context of multimedia applications

    Molecular Genotyping (SSR) and Agronomic Phenotyping for Utilization of Durum Wheat (Triticum durum Desf.) Ex Situ Collection from Southern Italy: A Combined Approach Including Pedigreed Varieties

    No full text
    In South Italy durum wheat (Triticum durum Desf.) has a long-time tradition of growing and breeding. Accessions collected and now preserved ex situ are a valuable genetic resource, but their effective use in agriculture and breeding programs remains very low. In this study, a small number (44) of simple sequence repeats (SSR) molecular markers were used to detect pattern of diversity for 136 accessions collected in South Italy over time, to identify the genepool of origin, and establish similarities with 28 Italian varieties with known pedigree grown in Italy over the same time-period. Phenotyping was conducted for 12 morphophysiological characters of agronomic interest. Based on discriminant analysis of principal components (DAPC) and STRUCTURE analysis six groups were identified, the assignment of varieties reflected the genetic basis and breeding strategies involved in their development. Some “old” varieties grown today are the result of evolution through natural hybridization and conservative pure line selection. A small number of molecular markers and little phenotyping coupled with powerful statistical analysis and comparison to pedigreed varieties can provide enough information on the genetic structure of durum wheat germplasm for a quick screening of the germplasm collection able to identify accessions for breeding or introduction in low input agriculture

    Pod indehiscence in common bean is associated to the fine regulation of PvMYB26

    No full text
    In legumes, pod shattering occurs when mature pods dehisce along the sutures, and detachment of the valves promotes seed dispersal. In Phaseolus vulgaris (L)., the major locus qPD5.1-Pv for pod indehiscence was identified recently. We developed a BC4/F4 introgression line population and narrowed the major locus down to a 22.5-kb region. Here, gene expression and a parallel histological analysis of dehiscent and indehiscent pods identified an AtMYB26 orthologue as the best candidate for loss of pod shattering, on a genomic region ~11 kb downstream of the highest associated peak. Based on mapping and expression data, we propose early and fine up-regulation of PvMYB26 in dehiscent pods. Detailed histological analysis establishes that pod indehiscence is associated to the lack of a functional abscission layer in the ventral sheath, and that the key anatomical modifications associated with pod shattering in common bean occur early during pod development. We finally propose that loss of pod shattering in legumes resulted from histological convergent evolution and that it is the result of selection at orthologous loci
    corecore